## Topology

Problem Sheet 3 Deadline: 07 May 2024, 15h

## Exercise 1 (4 Points).

An open covering of a topological space X is a family  $(U_i)_{i\in I}$  of open subsets of X such that  $X = \bigcup_{i\in I} U_i$ . Show that the following statements are equivalent for a given subset Z of X:

- a) The set Z is closed in X.
- b) For every open covering  $(U_i)_{i\in I}$  of X, the set  $Z\cap U_i$  is closed in  $U_i$  with respect to the subspace topology on  $U_i$ .
- c) There is some open covering  $(V_j)_{j\in J}$  of X such that the set  $Z\cap V_j$  is closed in  $V_j$  with respect to the subspace topology on  $V_j$ .

## Exercise 2 (4 Points).

Define the following equivalence relation in the Euclidean line  $\mathbb{R}$ :

$$xEy \iff x \cdot y > 0 \text{ or } x = y = 0.$$

- a) How many equivalence classes are there?
- b) Completely describe all open sets of the quotient topology with respect to this equivalence relation. Which classes in the quotient space are isolated?
- c) Is the quotient space R/E a  $T_1$  space?

## Exercise 3 (12 Points).

In a topological space X let E be an equivalence relation and consider  $\Delta_E$  be the set of all pairs (x, y) in  $X \times X$  such that E(x, y).

a) Assume that the quotient map  $p_E: X \to X/E$  is open. Show that  $\Delta_E$  is closed with respect to the product topology on  $X \times X$  if and only if the quotient space X/E is Hausdorff.

From now on, the topological space X will be a *a topological group*, that is, there is a group law on X such that both the inversion map

$$\begin{array}{ccc} X & \to & X \\ x & \mapsto & x^{-1} \end{array}$$

and the multiplication map

$$\begin{array}{ccc} X \times X & \to & X \\ (x,y) & \mapsto & x \cdot y \end{array}$$

are continuous, where  $X \times X$  is equipped with the product topology.

- b) Show that the inversion map is a homeomorphism.
- c) Show the following equivalences: X is  $T_2 \Leftrightarrow X$  is  $T_1 \Leftrightarrow$  the trivial subgroup  $\{e\}$  is closed.

(Please turn over the page!)

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM ENTSPRECHENDEN FACH IM KELLER DES MATHEMATISCHEN INSTITUTS.

d) Show that the subgroup H of X is closed if and only if the subset

$$\{(x,y) \in X \times X \mid y^{-1} \cdot x \in H\}$$

is closed in the product topology.

- e) Show that the subgroup H is closed whenever H is open in X.
- f) Show that for any subgroup H of X, the quotient map  $X \to X/H$  is always open, where X/H is equipped with the quotient topology.
- g) Conclude that the quotient group X/H is Hausdorff if X is Hausdorff and H is a closed subgroup.